
Download free eBooks at bookboon.com

Go Faster!

53

Three Levels of Abstraction

3 Three Levels of Abstraction

3.1 Introduction

In order to understand the TR approach to implementing the relational model, it’s necessary to be very clear over three

distinct levels of the system, which I’ll refer to as the three levels of abstraction (since each level is an abstraction of the

one below, loosely speaking). he three levels, or layers, are:

1. he relational (or user) level

2. he ile level

3. he TR level

hey’re illustrated in Fig. 3.1. In a nutshell:

Fig. 3.1: The three levels of abstraction

•	 Level 1, which corresponds to the database as seen by the user, is the relational level. At this level, the data is

perceived as relations, including, perhaps, the suppliers relation S discussed in Section 2.1 (and illustrated in

Fig. 2.1) in the previous chapter.

•	 Level 3 is the fundamental TR implementation level. At this level, data is represented by means of a variety

of internal structures called tables. Please note immediately that those TR tables are NOT tables in the SQL

sense and do NOT correspond directly to relations at the user level.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

54

Three Levels of Abstraction

•	 Level 2 is a level of indirection between the other two. Relations at the user or relational level are mapped to

iles at this level, and those iles are then mapped to tables at the TR level. Of course, the mappings go both

ways; that is, tables at the TR level map to iles at the next level up, and those iles then map to relations

at the top level. Note: As I’m sure you know, map is a synonym for transform (and I’ll be using the term in

that sense throughout this book); thus, we’re already beginning to touch on the TR transforms that were

mentioned in Chapter 1. However, there’s a great deal more to it, as we’ll soon see.

Please now observe that each level has its own terminology: relational terms at the user level, ile terms at the ile level,

and table terms at the TR level. Using diferent terms should, I hope, help you keep the three levels distinct and separate

in your mind; for that reason, I plan to use the three sets of terms consistently and systematically throughout the rest of

this book.

Having said that, I now need to say too that I’m well aware that some readers might object to my choice of terms—perhaps

even ind them confusing—for at least the following two reasons:

•	 First, the industry typically uses the terminology of tables, not relations, at the user level—almost exclusively

so, in fact. But I’ve already explained some of my rationale for wanting to use relational terms at that level

(see the previous chapter, Section 2.1), and I’m going to give some additional reasons in the next section.

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Go Faster!

55

Three Levels of Abstraction

•	 Second, the industry also typically tends to think of iles as a fairly “physical” construct. In fact, I did the

same thing myself in the previous chapter, somewhat, though I was careful in that chapter always to be quite

clear that the iles I was talking about were indeed physically stored iles speciically. By contrast, the iles I’ll

be talking about in the rest of the book are not physically stored; instead, they’re an abstraction of what’s

physically stored, and hence a “logical” construct, not a physical one. (hough it wouldn’t be wrong to think

of them as “slightly more physical” than the user-level relations, if you like.)

If you still think my terms are confusing, then I’m sorry, but for better or worse they’re the terms I’m going to use.

One inal point: When I talk of three levels, or layers, of abstraction, I don’t mean that each of those levels is physically

materialized in any concrete sense—of course not. he relational level is only a way of looking at the ile level, a way in

which certain details are ignored (that’s what “level of abstraction” means). Likewise, the ile level in turn is only a way of

looking at the TR level. Come to that, the TR level in turn is only a way of looking at the bits and bytes that are physically

stored; that is, the TR level is itself—as already noted in Chapter 1, Section 1.2—still somewhat abstract. In a sense, the

bits-and-bytes level is the only level that’s physically materialized.1

3.2 The Relational Level

Since the focus of this book is on the use of TR technology to implement the relational model speciically, the topmost

(user) level is relational by deinition. In other words, the user sees the database as a set of relations, made up of attributes

and tuples as explained in Chapter 2. For simplicity, I’m going to assume those relations are all base relations speciically

(again, see Chapter 2); that is, I’ll simply assume, barring explicit statements to the contrary, that any relation that’s named

and is included in the database is in fact a base relation speciically, and I won’t usually bother to use the “base” qualiier.

Also, of course, the user at the relational level has available a set of relational operators—restrict, project, join, and so

forth—for querying the relations in the database, as well as the usual INSERT, DELETE, and UPDATE operators for

updating them. Note: If I wanted to be more precise here, I’d have to get into the important distinction between relation

values and relation variables. Relational operators like join operate on relation values, while update operators like INSERT

operate on relation variables. Informally, however, it’s usual to call them all just relations, and—somewhat against my better

judgment—I’ve decided to follow that common usage (for the most part) in the present book. For further discussion of

such matters, see either reference [32] or reference [40].

Now, given the current state of the IT industry, the user level in a real database system will almost certainly be based on

SQL, not on the relational model. As a consequence, users will typically tend to think, not in terms of relational concepts

as such, but rather in terms of SQL analogs of those concepts. For example, there isn’t any explicit project operator, as such,

in SQL; instead, such an operation has to be formulated in terms of SQL’s SELECT and FROM operators, and the user has

to think in terms of those SQL operators, as in this example (“Project suppliers over supplier number and city name”):

SELECT S.S#, S.CITY

FROM S ;

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

56

Three Levels of Abstraction

Precisely because most of today’s database systems are in fact SQL systems speciically, I’ll show most of my examples in

what follows in SQL, not in pure relational form. But I do still want to use the terms relation, tuple, and attribute at the

user level (sometimes user relations, tuples, and attributes, for emphasis), instead of the more familiar SQL terms table,

row, and column, and—as I promised I would, both in Chapter 2 and in the previous section—I’d like to give my reasons

for adopting this perhaps rather purist or academic position. In essence, it seems to me that to use the SQL terms would

lead to at least three problems:

•	 First of all, we’re going to need to use the terminology of tables, rows, and columns—as we very oten do

when discussing sotware internals—at the implementation level (which is to say the TR level), and the TR

and SQL constructs are, as already noted, completely diferent things. So there would be an obvious potential

for confusion right away.

•	 Second, the SQL terminology tends to obscure the crucial distinction alluded to above between relation

values and relation variables. (SQL doesn’t clearly distinguish between these concepts at all, referring to them

both simply as tables, a state of afairs that has demonstrably led to some confusion in the past.)

•	 hird, considered as possible user-level terms, table, row, and column are in fact actively misleading (indeed,

I wish we’d never used them, not even in SQL), for at least the following reasons:

•	 hey lend weight to the “duplicate tuples” heresy. In fact, an SQL table can have duplicate rows, although

as we know a relation can’t have duplicate tuples. Note: he TR model itself doesn’t care whether there

are duplicates or not, and hence can support SQL’s nonrelational tables as well as proper relations—but I

don’t propose to discuss that nonrelational support in any detail in this book.

•	 hey suggest there’s a top-to-bottom ordering to the rows, though in fact there isn’t.

•	 hey suggest there’s a let-to-right ordering to the columns. (In fact there is, in SQL—another departure

from the relational model, as noted in Chapter 1.)

•	 hey suggest that “row-and-column intersections” in those tables can be accessed via [i,j]-style

subscripting, instead of associatively. hat is, tables—but deinitely not relations—are oten thought of

as being something like arrays (two-dimensional arrays, to be precise). Note: he term “associatively”

refers to the fact that data at the relational level is accessed by value, not by address. For example, “Get

tuples for suppliers in London” is a relational request, but “Get the irst and fourth supplier tuples” isn’t.

Likewise, “Get status values from tuples for suppliers in Paris” is a relational request, but “Get values of

the third attribute from tuples for suppliers in Paris” isn’t.

•	 Most signiicantly, they tend to obscure the important connections between the relational model and

mathematics and logic. (hose connections are important because they’re what make it possible to treat

database management as a science; without them, the ield becomes a mere ragbag of ad hoc tricks,

techniques, and rules of thumb.)

his isn’t an exhaustive list.2

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

57

Three Levels of Abstraction

3.3 The File Level

he irst step, conceptually speaking, in mapping a given relation to an appropriate TR representation is to convert that

relation into a ile, with records corresponding to the tuples and ields corresponding to the attributes. For example, Fig.

3.2 shows a possible ile corresponding—in a trivially obvious way—to the suppliers relation of Fig. 2.1 in Chapter 2.

Fig. 3.2: A ile corresponding to the suppliers relation of Fig. 2.1

Within such a ile, records do have a top-to-bottom ordering and ields do have a let-to-right ordering, as the record

numbers and ield numbers in the igure are meant to suggest.3 However, the orderings in question are essentially arbitrary;

thus, for example, the suppliers relation of Fig. 2.1 could map equally well to any of 2,880 diferent iles (120 diferent

orderings for the ive records and 24 diferent orderings for the four ields). By way of illustration, Fig. 3.3 shows another

possible ile corresponding to the suppliers relation of Fig. 2.1.

www.sylvania.com

We do not reinvent

the wheel we reinvent

light.
Fascinating lighting offers an ininite spectrum of

possibilities: Innovative technologies and new

markets provide both opportunities and challenges.

An environment in which your expertise is in high

demand. Enjoy the supportive working atmosphere

within our global group and beneit from international

career paths. Implement sustainable ideas in close

cooperation with other specialists and contribute to

inluencing our future. Come and join us in reinventing

light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Go Faster!

58

Three Levels of Abstraction

Fig. 3.3: Another ile corresponding to the suppliers relation of Fig. 2.1

Of course, those 2,880 diferent iles are all equivalent to one another, in the sense that they all represent exactly the same

information; in other words, they’re all information-equivalent. It’s sometimes convenient, therefore, to regard them, not

so much as 2,880 distinct iles as such, but rather as 2,880 diferent versions of “the same” ile.4 his perception will turn

out to be important in the next chapter—also, especially, in Chapter 7.

Files, records, and ields (sometimes user iles, records, and ields for emphasis, since in many respects the ile level is

still quite close to the user or relational level) can be operated upon by obvious counterparts to the operators available at

the relational level. Also, reconstructing the corresponding relation from a given ile (any version) is trivial: Just ignore

the orderings.

Files such as those shown in Figs. 3.2 and 3.3 can now be represented by tables at the TR level and can be reconstructed

from those TR tables. In fact (important!), many diferent versions of the same ile can all be reconstructed from the same

TR tables equally easily (using the term “versions” in the special sense explained above—that is, record and ield orderings

might be diferent, but content remains the same). We’ll see how this works out in the next chapter.

One last point: I’ve called this level the ile level and the next more speciically the TR level because most of the ingenuity,

inventiveness, and novelty of the TR model is to be found at that next level. However, the ile level too is part of the overall

TR implementation approach, of course.

3.4 The TR Level

Files at the ile level map to tables at the TR level, and those tables are made up of rows and columns. Like records and

ields within iles, rows in a TR table do have a top-to-bottom ordering and columns in such a table do have a let-to-

right ordering. And, very importantly, a row-and-column intersection within such a table, which I’ll refer to as a cell,

can be addressed via [i,j]-style subscripting (where i is the row number and j is the column number); in other words, TR

tables, unlike SQL tables, can legitimately, and usefully, be thought of as two-dimensional arrays. Cells in such a table or

array contain values. What’s more, those values can sometimes be composite; for example, a given cell might contain an

ordered pair of pointer values, and an ordered pair of values can certainly be regarded as a value—a composite value—in

its own right.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

59

Three Levels of Abstraction

Now, the mapping of iles to TR tables is quite a complex business, and I don’t want to start getting into details of how it’s

done until the next chapter. Suice it to say that it’s nothing like the direct-image kind of mapping discussed in Chapters

1 and 2. In particular, rows in TR tables do not correspond in any one-to-one kind of way to records at the ile level,

nor a fortiori do they correspond in any one-to-one kind of way to tuples at the relational level. By way of illustration,

Fig. 3.4 shows a TR table, the Field Values Table, corresponding to the ile of Fig. 3.2. As I’ve already indicated, I don’t

want to get into details yet of just how that table is obtained from that ile, but you might like to try to igure it out for

yourself (it’s not very diicult). All I want to do now is draw your attention to the fact that indeed, as claimed, the rows

don’t correspond in any obvious way to the records shown in Fig. 3.2.

Fig. 3.4: Field Values Table corresponding to the ile of Fig. 3.2

In order to be able to reconstruct the ile of Fig. 3.2 from the Field Values Table of Fig. 3.4, we need another table, the

Record Reconstruction Table.5 Again, I don’t want to get into details yet of how the Record Reconstruction Table is

obtained, nor how it’s used in the reconstruction process; I’ll just show, in Fig. 3.5, a possible Record Reconstruction

Table corresponding to the ile shown in Fig. 3.2 (and to the Field Values Table shown in Fig. 3.4)—and point out that the

entries in the Record Reconstruction Table aren’t supplier numbers or status values, etc., any longer (despite the column

labels) but are row numbers instead. For further explanation, see the next chapter.

Fig. 3.5: Record Reconstruction Table corresponding to ile of Fig. 3.2 (and Field Values Table of Fig. 3.4)

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

60

Three Levels of Abstraction

By the way, it’s a little misleading to talk (as I’ve just been doing) in terms of the Field Values Table and the Record

Reconstruction Table, because there’ll probably be many such tables in any real implementation—one of each for each

ile at the ile level, loosely speaking (but see Chapters 9 and 11-14 later). However, it’s much easier to talk in terms of, for

example, “the Field Values Table” instead of having to say something like “the particular Field Values Table that corresponds

to the ile of Fig. 3.2” every time we need to refer to such a thing. So I’ll continue to talk this way for most of the rest of

this book, and hope you won’t ind the practice confusing.

I’ll be discussing what’s involved in building and using the Field Values Table and the Record Reconstruction Table in

the next few chapters. For now, let me close by stressing a point I’ve made a couple of times already: namely, that the TR

level, though obviously at a much lower level of detail than the relational level, is nevertheless still abstract. In fact, TR is

a model in the sense of Chapter 1, meaning it can be regarded as a layer of abstraction over something deeper down. In

particular, the TR tables discussed above, and their associated operators, can be physically implemented in a variety of

diferent ways, some of which I’ll be talking about in later chapters. Very importantly, of course, they can be implemented

in either main memory or secondary storage; indeed, they can be implemented on absolutely any hardware platform

whatsoever, from a handheld or palmtop computer, to a laptop or desktop machine, to a mainframe, to a client/server or

other distributed system, to the most massively parallel supercomputer. Now, this book is primarily concerned with the

TR model as such, not so much with speciic implementations of that model; however, Part III does speciically address

the question of a disk-based implementation, since there are clearly special issues to be addressed in such an environment.

By contrast, Part II doesn’t assume any particular implementation environment at all (at least, not explicitly); however,

you can think of it for the most part as implicitly assuming a main-memory environment, if you ind it helpful to do so.

Endnotes

1. Well ... to be pedantic about it, those bits and bytes are an abstraction too, of course, and so on, all the way

down to the level of electrons (and beyond!). But bits and bytes are physical enough for our purposes.

2. In particular, I’d like to point out that certain very important relational “tables”—namely, the ones that

references [12] and [24] call TABLE_DEE and TABLE_DUM—don’t have any “columns” anyway. (he

analogy between relations and tables breaks down here.) Further discussion of this particular issue would

take us much too far aield, however; if you’re intrigued and want to know more, see either reference [32] or

reference [40].

3. In practice, like the record numbers discussed in Chapter 2, those record and ield numbers probably won’t

be simple sequential numbers as shown in the igure. he same is true for row and column numbers at the

TR level (see the next section).

4. Incidentally, note that those diferent versions can’t all be obtained by means of a simple ORDER BY.

5. I could logically have called this table the File Reconstruction Table, but I wanted to emphasize the point

that it can be used to reconstruct individual records of the ile as well as the ile in its entirety. In fact, it can

be used to reconstruct any subset of the records in that ile, and any subset of the ields in those records, as

we’ll see in the course of the next few chapters.

http://bookboon.com/

